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Motivation Modeling Design Experiments Conclusions

Motivation

• WiFi signals are available almost everywhere and they are
able to monitor surrounding activities.
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Problem Statment

WiFi based Activity Recognition

• Using commercial WiFi devices to recognize human activities.

Wireless router

Laptop

Wireless signal reflection

Advantages
X Work in dark
X Better coverage
X Less intrusive to user privacy
X No need to wear sensors
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Motivation Modeling Design Experiments Conclusions

Challenges

• Measurement from commercial devices are noisy and have
unpredictable carrier frequency offsets

• Needs robust and accurate models to extract useful infor-
mation from measurements
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Understanding Multipath

Key observations

• Multipaths contain both static
component and dynamic com-
ponent

• Each path has different phase
• Phases determine the ampli-

tude of the combined signal
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Understanding Multipath

Interpreting CSI amplitude
• Phases of paths are deter-

mined by path length
• Path length change of one

wavelength gives phase
change of 2π

• Frequency of amplitude
change can be converted to
movement speed I
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CSI-Speed Model

How accurate is it?

• Wave length→ 5 ∼ 6cm in 5 GHz band
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CSI-Speed Model

How robust is it?

• Robust over different multipath conditions and movement
directions

• Linear combination of multipath do not change frequency
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CSI-Activity Model

Activities are characterized by

• Movement speeds
• Change in movement speeds
• Speeds of different body components
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CSI-Activity Model

• Use time-frequency analysis to extract features
• Use HMM to characterize the state transitions of movements

Walking Falling

Sitting down
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CSI-Activity Model

• Build one HMM model for each activity
• Determine states based on observations in waveform pat-

terns
• State durations and relationships are captured by transition

probabilities
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System Architecture
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Data Collection

N

M

30 subcarriers
N ×M × 30 CSI streams
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Noise Reduction

Correlation of CSI on different subcarriers
• Subcarriers only differ slightly in wavelength
• Subcarriers have the same set of paths, with different phases

Frequency

312.5kHz

Wave length
= 5.150214 cm

Wave length
= 5.149662 cm
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Correlation in CSI Streams
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Noise Reduction

Combines N × M × 30 subcarriers using PCA to detect time-
varying correlations in signal
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Real-time Recognition

• Activity detection
- Use both the signal variance and correlation to detect pres-

ence of activities

• Feature extraction
- Time-frequency analysis (DWT)

• HMM model building
- Eight activities

Walking, running, falling, brushing teeth, sitting down, opening refrigerator,
pushing, boxing

- More than 1,400 samples from 25 persons as the training
set
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Evaluation Setup

• Commercial hardware with no modification
- Transmitter: NetGEAR JR6100 Wireless Router
- Receiver: Thinkpad X200 with Intel 5300 NIC

• A single communicating pair is enough to monitor 450 m2

open area

• Measurement on UDP packets sent between the pair
• Sampling rate 2,500 samples per second
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Evaluation Results

Activity recognized

Tr
ue

ac
tiv

ity

R W S O F B P T E
Running 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Walking 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Sitting 0.000 0.000 0.947 0.030 0.011 0.000 0.012 0.000 0.000

Opening 0.000 0.005 0.150 0.803 0.042 0.000 0.000 0.000 0.000
Falling 0.000 0.010 0.041 0.010 0.939 0.000 0.000 0.000 0.000
Boxing 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000

Pushing 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000
Brushing 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000

Empty 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

• Ten-fold validation accuracy: 96.5%
• Detects human movements at 14 meters
• Real-time recognition on laptops
• Packet sending rate can be as low as 800 frames per sec-

ond
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Evaluation on Robustness

• Models are robust to environment
changes

• Train once, apply to different sce-
narios

• Training use database collected in
lab with different users

• Test in with users not in the train-
ing set

• Open lobby
• Apartment (NLOS)
• Small office
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Evaluation on Robustness

• Consistent performance in unknown environments, with more
than 80% average accuracy
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Conclusions

• CSI measurements contains fine-grained movement infor-
mations

• CSI-Speed model
quantifies the correlation between CSI value dynamics and human movement

speeds

• CSI-Activity model
quantifies the correlation between the movement speeds of different human body

parts and a specific human activity

• Our models are robust to environment changes
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Q & A

Thank you!

Questions?
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